Parity of ranks for elliptic curves with a cyclic isogeny
نویسندگان
چکیده
منابع مشابه
Ranks of Elliptic Curves
This paper gives a general survey of ranks of elliptic curves over the field of rational numbers. The rank is a measure of the size of the set of rational points. The paper includes discussions of the Birch and SwinnertonDyer Conjecture, the Parity Conjecture, ranks in families of quadratic twists, and ways to search for elliptic curves of large rank.
متن کاملExplicit isogeny descent on elliptic curves
In this note, we consider an `-isogeny descent on a pair of elliptic curves over Q. We assume that ` > 3 is a prime. The main result expresses the relevant Selmer groups as kernels of simple explicit maps between finitedimensional F`-vector spaces defined in terms of the splitting fields of the kernels of the two isogenies. We give examples of proving the `-part of the Birch and Swinnerton-Dyer...
متن کاملOn Elliptic Curves with an Isogeny of Degree
We show that if E is an elliptic curve over Q with a Q-rational isogeny of degree 7, then the image of the 7-adic Galois representation attached to E is as large as allowed by the isogeny, except for the curves with complex multiplication by Q( √ −7). The analogous result with 7 replaced by a prime p > 7 was proved by the first author in [8]. The present case p = 7 has additional interesting co...
متن کاملGalois properties of elliptic curves with an isogeny
giving the action of GQ on Tp(E), the p-adic Tate module for E and for a prime p. If E doesn’t have complex multiplication, then a famous theorem of Serre [Ser2] asserts that the image of ρE,p has finite index in AutZp ( Tp(E) ) for all p and that the index is 1 for all but finitely many p. This paper concerns some of the exceptional cases where the index is not 1. If E has a cyclic isogeny of ...
متن کاملRanks of elliptic curves over function fields
We present experimental evidence to support the widely held belief that one half of all elliptic curves have infinitely many rational points. The method used to gather this evidence is a refinement of an algorithm due to the author which is based upon rigid and crystalline cohomology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2008
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2007.02.008